
Week 3 - Monday

 Scrum can be modeled with
an activity diagram showing
its steps

 Everything is built around a
cycle called a sprint

 Because sprints repeat, the
process is iterative

 Because each sprint
produces a shippable
product, the process is
incremental

Create Product
Backlog

Product
Vision

Product
Backlog

Shippable
Product

Sprint
Backlog

Sprint Review

Sprint Execution

Product
Backlog

Sprint
Backlog

Sprint Retrospective

Product
Backlog

Sprint Planning

Project DoneProject Not Done

 Agile methods are built around a product backlog, containing
high-level descriptions of the desired features of the product
 Items can be added to or removed from the product backlog at any time

 Some of the product backlog is chosen for a sprint
 Making the sprint backlog

 The sprint backlog is implemented, making a new shippable
product

 A sprint review allows customers to give feedback on the product
 The sprint retrospective is used to figure out how to do the next

sprint better

 Product owner (PO)
 Responsible for what's in the product
 Customer representative to the other developers
 Updates the product backlog

 Scrum master (SM)
 Guides the team through the Scrum process
 Facilitator and coach
 Protects the team from outside interference

 Team members
 People who decide how to build the project and build it
 Typically, everyone works on everything

 Product backlog
 A prioritized list of product features that haven't been implemented yet
 Product backlog items (PBIs) are the elements of this list
 Priorities are based on business value

 Sprint backlog
 Subset of PBIs
 Tasks needed to complete them
 Estimates of effort needed for each one

 Potentially shippable increment (PSI)
 Product that could be shipped to the customer (though maybe without all the desired

features)
 A PBI on the sprint backlog that wasn't finished goes back into the product backlog

 Product backlog creation
 The PO creates the product backlog for the first time, using customer input

 Product backlog refinement
 The PO constantly adds and deletes PBIs from the product backlog based on feedback from stakeholders

 Sprint planning
 The PO, SM, and other team members select PBIs, maybe with a particular sprint goal
 PBIs are chosen by priority, taking into account how much can be done by estimating the work for the tasks

for a PBI
 Sprint execution
 Everyone performs the tasks to implement the sprint backlog PBIs

 Sprint review
 A product demo where stakeholders discuss what was added and how they feel about it
 Goal: improving the product

 Sprint retrospective
 The team discusses what went well, what didn't, and how the next sprint can be better
 Goal: improving the process

 The product backlog is a prioritized list of PBIs
 Each PBI consists of
 Specification
 Priority
 Estimate of effort
 Acceptance criteria

 PBI specifications can be less formal and more general than
requirements in waterfall

 They could be traditional requirements statements, UI diagrams,
use cases, user stories, bugs, design tasks, research tasks, etc.

 They start at broad levels of abstraction and are refined over time
 PBIs are refined into detailed, sprintable PBIs as needed, based on

priorities
 Product backlogs should contain enough refined PBIs for two or

three sprints

 User stories are the most popular way of specifying features in Scrum
 User story format:
 As a <user role> I want to <goal> so that <benefit>.

 Examples:
 As a course scheduler I want to determine whether students can take other sections of a

course so that I can see if I can cancel a section with students already enrolled in it.
 As a shopper I want to see whether an item is still on sale so that I can buy it more

cheaply.
 As an internet user I want to secure my devices so that I can protect my private

information.
 As an electric utility customer I want to see my usage over several years so that I can

analyze it to budget my electricity costs more exactly.

 User stories come at different levels of abstraction and size
 Large, abstract stories that would take months of coding are

sometimes called epics
 Medium-sized stories that would take several sprints are sometimes

called features
 Small, detailed stories that can be done in a single sprint are

sprintable stories (or simply stories)
 Even sprintable stories usually aren't detailed enough to

implement without additional conversations with
stakeholders

 In addition to the specification of functionality, every PBI
should have a priority

 Priorities express how important the PBI is and can be
expressed as a number or a rubric (low, medium, high, critical)

 The PO sets the priorities based on stakeholder feedback
 Dependencies also determine priorities: If X is needed for Y,

then the priority of X must be at least as high as Y
 High-priority PBIs should be small enough to do in a single

sprint

 Each PBI must have an effort estimate
 High-priority, sprintable PBIs need precise estimates (such as

person-days), to aid in sprint planning
 Low-priority, abstract PBIs are further from sprintable status

and only need rough estimates (small, medium, large,
gigantic)

 As PBIs are refined, their effort estimates need to become
more precise

 How do we know when a PBI is done?
 Acceptance criteria are checks a user can do to see if a PBI is

finished and correct
 Often, these form a test suite used by developers
 Following the same pattern of steady refinement, high-

priority PBIs should have detailed acceptance criteria
 These acceptance criteria might be further refined during the sprint

 Refining or grooming the product backlog means:
 Adding, removing, or modifying PBIs
 Making PBIs nearing the top of the product backlog more detailed
 Re-estimating and re-prioritizing PBIs
 Adding acceptance criteria to PBIs

 Refinement happens during sprint review
 It should happen at least once during a sprint to make sure

there are enough sprintable stories for the next sprint
 POs will be managing the product backlog through Trello

 Two pieces of information are needed: The size of the job and
the speed of the team

 PBIs are estimated by story points or ideal hours
 One or two story points is supposed to be how much effort

the smallest stories take
 Bigger stories are estimated relative to that size

 An ideal hour or a person hour is the amount an average
developer can accomplish in one uninterrupted hour of work

 Story points are more commonly used, since they're easier to
estimate

 Velocity is the amount of work done per sprint
 After a sprint, story points or ideal hours can be added up to

see how much got done
 Past velocities can be used as a guide for how many story

points can get done when planning the next sprint
 Ideally, tracking this information will help get better estimates

of story points and ideal hours for other stories and also a
better estimate of team velocity

 In sprint planning, teams refine their estimates of high-priority PBIs before
finalizing the sprint backlog

 For each PBI, they estimate the tasks involved in ideal hours
 Story points can be used, but ideal hours are more precise

 The tasks can include:
 Coding
 Unit testing
 Integration testing
 Acceptance testing
 Code inspection
 Updating user documentation

 The final sprint backlog includes PBIs, their constituent tasks, and effort
estimates for all tasks

 Sprinting is actually doing the implementation
 Sprinting is considered a time-boxing technique, where the

amount of work done is based on the time available
 Rather than letting time expand as needed to finish a task

 For a given project (and at a given company) sprints are usually
the same length, somewhere between a week and a month

 Short, consistent sprints are easier to plan and track and give
rapid feedback

 If PBIs can't be finished during a sprint, they go back on the
product backlog

 If a team finishes all PBIs before the sprint is over, they can get
another one from the PO

 What does done mean?
 Team have their own versions of done, often with the following

items:
 Design is complete and reviewed
 Code is formatted and commented
 Code has passed inspection
 Code has passed PBI acceptance criteria (tests)
 Code has passed all unit tests and regression tests
 User documentation has been updated
 Code has been integrated and passed all integration and systems tests

 When a PBI is truly done, it's removed from the product backlog

 Units of effort in Scrum are called story points
 Story points are relative units
 They're based on some of the smallest tasks, using them as a baseline of 1

story point
 Everything is estimated relative to those

 Story points aren't used for epics since they're too big and
abstract

 As PBIs get refined, their effort estimate gets refined too
 By the time they're sprintable, they need a relatively accurate

story point estimate
 This means that there are good estimates for sprintable stories

but no estimates for how much work the whole project will take

 What if members of the team disagree on the story points needed
for several stories?

 Agreement is needed for the sake of fairness and to plan how
much work can actually get done in a sprint

 Planning poker is a way to bring the team to consensus about the
relative difficulty of user stories

 Its goal is accuracy (ranking the stories by true difficulty) rather
than precision (getting true estimates of how long things will take)
 It's really hard to get true estimates, but it's good to know which stories

take more work

 First, the team decides what numbers to use as estimates
 Our cards: 1, 2, 3, 5, 8, 13, 21, ∞, ?

 Planning poker has rounds
 Each round estimates the effort for one PBI
 Each team member throws in one card to show her effort estimation
 If all cards match, the value is the estimate
 If they don't match, the team discusses their estimates, focusing on the

highest and lowest estimators
 Repeat the round until consensus is reached

 It usually only takes a couple of rounds to reach consensus
 Estimates are usually pretty good because of discussion

 At the end of a sprint, there's a sprint review to reflect on how
the product is changing

 All stakeholders are invited
 Sprint review outline:
 Starts with the overall sprint goal and the PBIs in the sprint backlog
 Team lists the PBIs completed and explains why some didn't get

done
 New aspects of the product are demonstrated
 Everyone discusses how to make the product better

 Results of the review are used for planning the next sprint

 At the end of a sprint, there's also a sprint retrospective
 Only the development team, including the PO and the SM, are

invited
 The retrospective is for analyzing how the team is working and

how to improve
 Improvements tend to be clear when a new team is working on a

new product
 It may still take several sprints for an improvement to get fully integrated

into the process
 Over time, the team can become comfortable with the process,

but finding improvement opportunities is still important

 Daily scrum: Short daily meeting, often called a stand-up (having no chairs
encourages brevity)
 What did I do since the last meeting
 What will I do today
 What is impeding my progress

 Story time: Groom the product backlog
 Cross-functional teams: Get non-specialists to help with specialized tasks, to

get the job done and expand skills
 Sustainable pace: Don't overwork
 Planning poker: Have team members contribute their time/work estimate for a

PBI
 Bidding: Team members bid on tasks with ideal hours
 Pair programming: Two people sit together to code, with one typing (the

driver) and the other checking (the navigator), switching off frequently

 At least have categories for:
 Product Backlog
 Sprint Backlog
 Assigned Stories
 In-Progress Stories
 In-Testing Stories
 Done

 Cards in the Product Backlog will often be broken down into
smaller tasks (new cards)

 Cards should have a priority, an effort estimate, and note if they
require another card to be done first

 Most groups are making a webpage of one kind or another
 Webpages often have backends
 Servers that generate the actual HTML, CSS, and JavaScript that

web browsers view
 Often this requires interacting with a database

 Webpages also have frontends
 This is the art of designing the HTML, CSS, and JavaScript to look

good and be responsive to user interaction

 I recommend that groups creating a website use React for frontend work
 It's an industry standard
 There are millions of tutorials out there
 It's not hard to make a good looking webpage
 I can be more helpful if everyone is using a similar platform

 For those groups, I'll recommend Node.js for the backend
 It's also an industry standard with lots of tutorials
 Express is useful middleware

 If your site is filled with static content, you don't necessarily need a
backend

 If you are dynamically scraping someone else's content, your backend will
be integrated with that scraping tool

 Sprint 1 ends next Friday!

	COMP 4100
	Questions?
	Scrum Review
	Scrum process
	Sprints
	Scrum roles
	Scrum artifacts
	Scrum activities
	Managing the product backlog
	PBI specifications
	User stories
	User story abstraction
	PBI priorities
	PBI effort estimates
	PBI acceptance criteria
	Product backlog refinement
	Estimating work and timeline
	Velocity
	Creating the sprint backlog
	Sprinting
	Definition of done
	Effort estimation in Scrum
	Detailed estimation in Scrum
	Planning poker
	Sprint review
	Sprint retrospective
	Other Scrum practices
	Trello recommendations
	Web recommendations
	More web recommendations
	Upcoming
	Reminders

