
Week 3 - Monday







 Scrum can be modeled with 
an activity diagram showing 
its steps

 Everything is built around a 
cycle called a sprint

 Because sprints repeat, the 
process is iterative

 Because each sprint 
produces a shippable 
product, the process is 
incremental
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 Agile methods are built around a product backlog, containing 
high-level descriptions of the desired features of the product
 Items can be added to or removed from the product backlog at any time

 Some of the product backlog is chosen for a sprint
 Making the sprint backlog

 The sprint backlog is implemented, making a new shippable 
product

 A sprint review allows customers to give feedback on the product
 The sprint retrospective is used to figure out how to do the next 

sprint better



 Product owner (PO)
 Responsible for what's in the product
 Customer representative to the other developers
 Updates the product backlog

 Scrum master (SM)
 Guides the team through the Scrum process
 Facilitator and coach
 Protects the team from outside interference

 Team members
 People who decide how to build the project and build it
 Typically, everyone works on everything



 Product backlog
 A prioritized list of product features that haven't been implemented yet
 Product backlog items (PBIs) are the elements of this list
 Priorities are based on business value

 Sprint backlog
 Subset of PBIs
 Tasks needed to complete them
 Estimates of effort needed for each one

 Potentially shippable increment (PSI)
 Product that could be shipped to the customer (though maybe without all the desired 

features)
 A PBI on the sprint backlog that wasn't finished goes back into the product backlog



 Product backlog creation
 The PO creates the product backlog for the first time, using customer input

 Product backlog refinement
 The PO constantly adds and deletes PBIs from the product backlog based on feedback from stakeholders

 Sprint planning
 The PO, SM, and other team members select PBIs, maybe with a particular sprint goal
 PBIs are chosen by priority, taking into account how much can be done by estimating the work for the tasks 

for a PBI
 Sprint execution
 Everyone performs the tasks to implement the sprint backlog PBIs

 Sprint review
 A product demo where stakeholders discuss what was added and how they feel about it
 Goal: improving the product

 Sprint retrospective
 The team discusses what went well, what didn't, and how the next sprint can be better
 Goal: improving the process



 The product backlog is a prioritized list of PBIs
 Each PBI consists of
 Specification
 Priority
 Estimate of effort
 Acceptance criteria



 PBI specifications can be less formal and more general than 
requirements in waterfall

 They could be traditional requirements statements, UI diagrams, 
use cases, user stories, bugs, design tasks, research tasks, etc.

 They start at broad levels of abstraction and are refined over time
 PBIs are refined into detailed, sprintable PBIs as needed, based on 

priorities
 Product backlogs should contain enough refined PBIs for two or 

three sprints



 User stories are the most popular way of specifying features in Scrum
 User story format:
 As a <user role> I want to <goal> so that <benefit>.

 Examples:
 As a course scheduler I want to determine whether students can take other sections of a 

course so that I can see if I can cancel a section with students already enrolled in it.
 As a shopper I want to see whether an item is still on sale so that I can buy it more 

cheaply.
 As an internet user I want to secure my devices so that I can protect my private 

information.
 As an electric utility customer I want to see my usage over several years so that I can 

analyze it to budget my electricity costs more exactly.



 User stories come at different levels of abstraction and size
 Large, abstract stories that would take months of coding are 

sometimes called epics
 Medium-sized stories that would take several sprints are sometimes 

called features
 Small, detailed stories that can be done in a single sprint are 

sprintable stories (or simply stories)
 Even sprintable stories usually aren't detailed enough to 

implement without additional conversations with 
stakeholders



 In addition to the specification of functionality, every PBI 
should have a priority

 Priorities express how important the PBI is and can be 
expressed as a number or a rubric (low, medium, high, critical)

 The PO sets the priorities based on stakeholder feedback
 Dependencies also determine priorities:  If X is needed for Y, 

then the priority of X must be at least as high as Y
 High-priority PBIs should be small enough to do in a single 

sprint



 Each PBI must have an effort estimate
 High-priority, sprintable PBIs need precise estimates (such as 

person-days), to aid in sprint planning
 Low-priority, abstract PBIs are further from sprintable status 

and only need rough estimates (small, medium, large, 
gigantic)

 As PBIs are refined, their effort estimates need to become 
more precise



 How do we know when a PBI is done?
 Acceptance criteria are checks a user can do to see if a PBI is 

finished and correct
 Often, these form a test suite used by developers
 Following the same pattern of steady refinement, high-

priority PBIs should have detailed acceptance criteria
 These acceptance criteria might be further refined during the sprint



 Refining or grooming the product backlog means:
 Adding, removing, or modifying PBIs
 Making PBIs nearing the top of the product backlog more detailed
 Re-estimating and re-prioritizing PBIs
 Adding acceptance criteria to PBIs

 Refinement happens during sprint review
 It should happen at least once during a sprint to make sure 

there are enough sprintable stories for the next sprint
 POs will be managing the product backlog through Trello



 Two pieces of information are needed: The size of the job and 
the speed of the team

 PBIs are estimated by story points or ideal hours
 One or two story points is supposed to be how much effort 

the smallest stories take
 Bigger stories are estimated relative to that size

 An ideal hour or a person hour is the amount an average 
developer can accomplish in one uninterrupted hour of work

 Story points are more commonly used, since they're easier to 
estimate



 Velocity is the amount of work done per sprint
 After a sprint, story points or ideal hours can be added up to 

see how much got done
 Past velocities can be used as a guide for how many story 

points can get done when planning the next sprint
 Ideally, tracking this information will help get better estimates 

of story points and ideal hours for other stories and also a 
better estimate of team velocity



 In sprint planning, teams refine their estimates of high-priority PBIs before 
finalizing the sprint backlog

 For each PBI, they estimate the tasks involved in ideal hours
 Story points can be used, but ideal hours are more precise

 The tasks can include:
 Coding
 Unit testing
 Integration testing
 Acceptance testing
 Code inspection
 Updating user documentation

 The final sprint backlog includes PBIs, their constituent tasks, and effort 
estimates for all tasks



 Sprinting is actually doing the implementation
 Sprinting is considered a time-boxing technique, where the 

amount of work done is based on the time available
 Rather than letting time expand as needed to finish a task

 For a given project (and at a given company) sprints are usually 
the same length, somewhere between a week and a month

 Short, consistent sprints are easier to plan and track and give 
rapid feedback

 If PBIs can't be finished during a sprint, they go back on the 
product backlog

 If a team finishes all PBIs before the sprint is over, they can get 
another one from the PO



 What does done mean?
 Team have their own versions of done, often with the following 

items:
 Design is complete and reviewed
 Code is formatted and commented
 Code has passed inspection
 Code has passed PBI acceptance criteria (tests)
 Code has passed all unit tests and regression tests
 User documentation has been updated
 Code has been integrated and passed all integration and systems tests

 When a PBI is truly done, it's removed from the product backlog



 Units of effort in Scrum are called story points
 Story points are relative units
 They're based on some of the smallest tasks, using them as a baseline of 1 

story point
 Everything is estimated relative to those

 Story points aren't used for epics since they're too big and 
abstract

 As PBIs get refined, their effort estimate gets refined too
 By the time they're sprintable, they need a relatively accurate 

story point estimate
 This means that there are good estimates for sprintable stories 

but no estimates for how much work the whole project will take



 What if members of the team disagree on the story points needed 
for several stories?

 Agreement is needed for the sake of fairness and to plan how 
much work can actually get done in a sprint

 Planning poker is a way to bring the team to consensus about the 
relative difficulty of user stories

 Its goal is accuracy (ranking the stories by true difficulty) rather 
than precision (getting true estimates of how long things will take)
 It's really hard to get true estimates, but it's good to know which stories 

take more work



 First, the team decides what numbers to use as estimates
 Our cards: 1, 2, 3, 5, 8, 13, 21, ∞, ?

 Planning poker has rounds
 Each round estimates the effort for one PBI
 Each team member throws in one card to show her effort estimation
 If all cards match, the value is the estimate
 If they don't match, the team discusses their estimates, focusing on the 

highest and lowest estimators
 Repeat the round until consensus is reached

 It usually only takes a couple of rounds to reach consensus
 Estimates are usually pretty good because of discussion



 At the end of a sprint, there's a sprint review to reflect on how 
the product is changing

 All stakeholders are invited
 Sprint review outline:
 Starts with the overall sprint goal and the PBIs in the sprint backlog
 Team lists the PBIs completed and explains why some didn't get 

done
 New aspects of the product are demonstrated
 Everyone discusses how to make the product better

 Results of the review are used for planning the next sprint



 At the end of a sprint, there's also a sprint retrospective
 Only the development team, including the PO and the SM, are 

invited
 The retrospective is for analyzing how the team is working and 

how to improve
 Improvements tend to be clear when a new team is working on a 

new product
 It may still take several sprints for an improvement to get fully integrated 

into the process
 Over time, the team can become comfortable with the process, 

but finding improvement opportunities is still important



 Daily scrum: Short daily meeting, often called a stand-up (having no chairs 
encourages brevity)
 What did I do since the last meeting
 What will I do today
 What is impeding my progress

 Story time: Groom the product backlog
 Cross-functional teams: Get non-specialists to help with specialized tasks, to 

get the job done and expand skills
 Sustainable pace: Don't overwork
 Planning poker: Have team members contribute their time/work estimate for a 

PBI
 Bidding: Team members bid on tasks with ideal hours
 Pair programming: Two people sit together to code, with one typing (the 

driver) and the other checking (the navigator), switching off frequently



 At least have categories for:
 Product Backlog
 Sprint Backlog
 Assigned Stories
 In-Progress Stories
 In-Testing Stories
 Done

 Cards in the Product Backlog will often be broken down into 
smaller tasks (new cards)

 Cards should have a priority, an effort estimate, and note if they 
require another card to be done first



 Most groups are making a webpage of one kind or another
 Webpages often have backends
 Servers that generate the actual HTML, CSS, and JavaScript that 

web browsers view
 Often this requires interacting with a database

 Webpages also have frontends
 This is the art of designing the HTML, CSS, and JavaScript to look 

good and be responsive to user interaction



 I recommend that groups creating a website use React for frontend work
 It's an industry standard
 There are millions of tutorials out there
 It's not hard to make a good looking webpage
 I can be more helpful if everyone is using a similar platform

 For those groups, I'll recommend Node.js for the backend
 It's also an industry standard with lots of tutorials
 Express is useful middleware

 If your site is filled with static content, you don't necessarily need a 
backend

 If you are dynamically scraping someone else's content, your backend will 
be integrated with that scraping tool





 Sprint 1 ends next Friday!
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