
Week 3 - Monday

 Scrum can be modeled with
an activity diagram showing
its steps

 Everything is built around a
cycle called a sprint

 Because sprints repeat, the
process is iterative

 Because each sprint
produces a shippable
product, the process is
incremental

Create Product
Backlog

Product
Vision

Product
Backlog

Shippable
Product

Sprint
Backlog

Sprint Review

Sprint Execution

Product
Backlog

Sprint
Backlog

Sprint Retrospective

Product
Backlog

Sprint Planning

Project DoneProject Not Done

 Agile methods are built around a product backlog, containing
high-level descriptions of the desired features of the product
 Items can be added to or removed from the product backlog at any time

 Some of the product backlog is chosen for a sprint
 Making the sprint backlog

 The sprint backlog is implemented, making a new shippable
product

 A sprint review allows customers to give feedback on the product
 The sprint retrospective is used to figure out how to do the next

sprint better

 Product owner (PO)
 Responsible for what's in the product
 Customer representative to the other developers
 Updates the product backlog

 Scrum master (SM)
 Guides the team through the Scrum process
 Facilitator and coach
 Protects the team from outside interference

 Team members
 People who decide how to build the project and build it
 Typically, everyone works on everything

 Product backlog
 A prioritized list of product features that haven't been implemented yet
 Product backlog items (PBIs) are the elements of this list
 Priorities are based on business value

 Sprint backlog
 Subset of PBIs
 Tasks needed to complete them
 Estimates of effort needed for each one

 Potentially shippable increment (PSI)
 Product that could be shipped to the customer (though maybe without all the desired

features)
 A PBI on the sprint backlog that wasn't finished goes back into the product backlog

 Product backlog creation
 The PO creates the product backlog for the first time, using customer input

 Product backlog refinement
 The PO constantly adds and deletes PBIs from the product backlog based on feedback from stakeholders

 Sprint planning
 The PO, SM, and other team members select PBIs, maybe with a particular sprint goal
 PBIs are chosen by priority, taking into account how much can be done by estimating the work for the tasks

for a PBI
 Sprint execution
 Everyone performs the tasks to implement the sprint backlog PBIs

 Sprint review
 A product demo where stakeholders discuss what was added and how they feel about it
 Goal: improving the product

 Sprint retrospective
 The team discusses what went well, what didn't, and how the next sprint can be better
 Goal: improving the process

 The product backlog is a prioritized list of PBIs
 Each PBI consists of
 Specification
 Priority
 Estimate of effort
 Acceptance criteria

 PBI specifications can be less formal and more general than
requirements in waterfall

 They could be traditional requirements statements, UI diagrams,
use cases, user stories, bugs, design tasks, research tasks, etc.

 They start at broad levels of abstraction and are refined over time
 PBIs are refined into detailed, sprintable PBIs as needed, based on

priorities
 Product backlogs should contain enough refined PBIs for two or

three sprints

 User stories are the most popular way of specifying features in Scrum
 User story format:
 As a <user role> I want to <goal> so that <benefit>.

 Examples:
 As a course scheduler I want to determine whether students can take other sections of a

course so that I can see if I can cancel a section with students already enrolled in it.
 As a shopper I want to see whether an item is still on sale so that I can buy it more

cheaply.
 As an internet user I want to secure my devices so that I can protect my private

information.
 As an electric utility customer I want to see my usage over several years so that I can

analyze it to budget my electricity costs more exactly.

 User stories come at different levels of abstraction and size
 Large, abstract stories that would take months of coding are

sometimes called epics
 Medium-sized stories that would take several sprints are sometimes

called features
 Small, detailed stories that can be done in a single sprint are

sprintable stories (or simply stories)
 Even sprintable stories usually aren't detailed enough to

implement without additional conversations with
stakeholders

 In addition to the specification of functionality, every PBI
should have a priority

 Priorities express how important the PBI is and can be
expressed as a number or a rubric (low, medium, high, critical)

 The PO sets the priorities based on stakeholder feedback
 Dependencies also determine priorities: If X is needed for Y,

then the priority of X must be at least as high as Y
 High-priority PBIs should be small enough to do in a single

sprint

 Each PBI must have an effort estimate
 High-priority, sprintable PBIs need precise estimates (such as

person-days), to aid in sprint planning
 Low-priority, abstract PBIs are further from sprintable status

and only need rough estimates (small, medium, large,
gigantic)

 As PBIs are refined, their effort estimates need to become
more precise

 How do we know when a PBI is done?
 Acceptance criteria are checks a user can do to see if a PBI is

finished and correct
 Often, these form a test suite used by developers
 Following the same pattern of steady refinement, high-

priority PBIs should have detailed acceptance criteria
 These acceptance criteria might be further refined during the sprint

 Refining or grooming the product backlog means:
 Adding, removing, or modifying PBIs
 Making PBIs nearing the top of the product backlog more detailed
 Re-estimating and re-prioritizing PBIs
 Adding acceptance criteria to PBIs

 Refinement happens during sprint review
 It should happen at least once during a sprint to make sure

there are enough sprintable stories for the next sprint
 POs will be managing the product backlog through Trello

 Two pieces of information are needed: The size of the job and
the speed of the team

 PBIs are estimated by story points or ideal hours
 One or two story points is supposed to be how much effort

the smallest stories take
 Bigger stories are estimated relative to that size

 An ideal hour or a person hour is the amount an average
developer can accomplish in one uninterrupted hour of work

 Story points are more commonly used, since they're easier to
estimate

 Velocity is the amount of work done per sprint
 After a sprint, story points or ideal hours can be added up to

see how much got done
 Past velocities can be used as a guide for how many story

points can get done when planning the next sprint
 Ideally, tracking this information will help get better estimates

of story points and ideal hours for other stories and also a
better estimate of team velocity

 In sprint planning, teams refine their estimates of high-priority PBIs before
finalizing the sprint backlog

 For each PBI, they estimate the tasks involved in ideal hours
 Story points can be used, but ideal hours are more precise

 The tasks can include:
 Coding
 Unit testing
 Integration testing
 Acceptance testing
 Code inspection
 Updating user documentation

 The final sprint backlog includes PBIs, their constituent tasks, and effort
estimates for all tasks

 Sprinting is actually doing the implementation
 Sprinting is considered a time-boxing technique, where the

amount of work done is based on the time available
 Rather than letting time expand as needed to finish a task

 For a given project (and at a given company) sprints are usually
the same length, somewhere between a week and a month

 Short, consistent sprints are easier to plan and track and give
rapid feedback

 If PBIs can't be finished during a sprint, they go back on the
product backlog

 If a team finishes all PBIs before the sprint is over, they can get
another one from the PO

 What does done mean?
 Team have their own versions of done, often with the following

items:
 Design is complete and reviewed
 Code is formatted and commented
 Code has passed inspection
 Code has passed PBI acceptance criteria (tests)
 Code has passed all unit tests and regression tests
 User documentation has been updated
 Code has been integrated and passed all integration and systems tests

 When a PBI is truly done, it's removed from the product backlog

 Units of effort in Scrum are called story points
 Story points are relative units
 They're based on some of the smallest tasks, using them as a baseline of 1

story point
 Everything is estimated relative to those

 Story points aren't used for epics since they're too big and
abstract

 As PBIs get refined, their effort estimate gets refined too
 By the time they're sprintable, they need a relatively accurate

story point estimate
 This means that there are good estimates for sprintable stories

but no estimates for how much work the whole project will take

 What if members of the team disagree on the story points needed
for several stories?

 Agreement is needed for the sake of fairness and to plan how
much work can actually get done in a sprint

 Planning poker is a way to bring the team to consensus about the
relative difficulty of user stories

 Its goal is accuracy (ranking the stories by true difficulty) rather
than precision (getting true estimates of how long things will take)
 It's really hard to get true estimates, but it's good to know which stories

take more work

 First, the team decides what numbers to use as estimates
 Our cards: 1, 2, 3, 5, 8, 13, 21, ∞, ?

 Planning poker has rounds
 Each round estimates the effort for one PBI
 Each team member throws in one card to show her effort estimation
 If all cards match, the value is the estimate
 If they don't match, the team discusses their estimates, focusing on the

highest and lowest estimators
 Repeat the round until consensus is reached

 It usually only takes a couple of rounds to reach consensus
 Estimates are usually pretty good because of discussion

 At the end of a sprint, there's a sprint review to reflect on how
the product is changing

 All stakeholders are invited
 Sprint review outline:
 Starts with the overall sprint goal and the PBIs in the sprint backlog
 Team lists the PBIs completed and explains why some didn't get

done
 New aspects of the product are demonstrated
 Everyone discusses how to make the product better

 Results of the review are used for planning the next sprint

 At the end of a sprint, there's also a sprint retrospective
 Only the development team, including the PO and the SM, are

invited
 The retrospective is for analyzing how the team is working and

how to improve
 Improvements tend to be clear when a new team is working on a

new product
 It may still take several sprints for an improvement to get fully integrated

into the process
 Over time, the team can become comfortable with the process,

but finding improvement opportunities is still important

 Daily scrum: Short daily meeting, often called a stand-up (having no chairs
encourages brevity)
 What did I do since the last meeting
 What will I do today
 What is impeding my progress

 Story time: Groom the product backlog
 Cross-functional teams: Get non-specialists to help with specialized tasks, to

get the job done and expand skills
 Sustainable pace: Don't overwork
 Planning poker: Have team members contribute their time/work estimate for a

PBI
 Bidding: Team members bid on tasks with ideal hours
 Pair programming: Two people sit together to code, with one typing (the

driver) and the other checking (the navigator), switching off frequently

 At least have categories for:
 Product Backlog
 Sprint Backlog
 Assigned Stories
 In-Progress Stories
 In-Testing Stories
 Done

 Cards in the Product Backlog will often be broken down into
smaller tasks (new cards)

 Cards should have a priority, an effort estimate, and note if they
require another card to be done first

 Most groups are making a webpage of one kind or another
 Webpages often have backends
 Servers that generate the actual HTML, CSS, and JavaScript that

web browsers view
 Often this requires interacting with a database

 Webpages also have frontends
 This is the art of designing the HTML, CSS, and JavaScript to look

good and be responsive to user interaction

 I recommend that groups creating a website use React for frontend work
 It's an industry standard
 There are millions of tutorials out there
 It's not hard to make a good looking webpage
 I can be more helpful if everyone is using a similar platform

 For those groups, I'll recommend Node.js for the backend
 It's also an industry standard with lots of tutorials
 Express is useful middleware

 If your site is filled with static content, you don't necessarily need a
backend

 If you are dynamically scraping someone else's content, your backend will
be integrated with that scraping tool

 Sprint 1 ends next Friday!

	COMP 4100
	Questions?
	Scrum Review
	Scrum process
	Sprints
	Scrum roles
	Scrum artifacts
	Scrum activities
	Managing the product backlog
	PBI specifications
	User stories
	User story abstraction
	PBI priorities
	PBI effort estimates
	PBI acceptance criteria
	Product backlog refinement
	Estimating work and timeline
	Velocity
	Creating the sprint backlog
	Sprinting
	Definition of done
	Effort estimation in Scrum
	Detailed estimation in Scrum
	Planning poker
	Sprint review
	Sprint retrospective
	Other Scrum practices
	Trello recommendations
	Web recommendations
	More web recommendations
	Upcoming
	Reminders

